Метод наименьших квадратов
Метод наименьших квадратов (МНК) - метод оценки параметров модели на основании экспериментальных данных, содержащих случайные ошибки. В основе метода лежат следующие рассуждения: при замене точного (неизвестного) параметра модели приблизительным значением необходимо минимизировать разницу между экспериментальными данными и теоретическими (вычисленными при помощи предложенной модели). Это позволяет рассчитать параметры модели с помощью МНК с минимальной погрешностью.
Мерой разницы в методе наименьших квадратов служит сумма квадратов отклонений действительных (экспериментальных) значений от теоретических. Выбираются такие значения параметров модели, при которых сумма квадратов разностей будет наименьшей – отсюда название метода:
= min
где Y – теоретическое значение измеряемой величины, y – экспериментальное.
При этом полученные с помощью МНК параметры модели являются наиболее вероятными.
Метод наименьших квадратов, а также его различные модификации (нелинейный МНК, взвешенный МНК и т.д.) широко используется в аналитической химии, в частности, при построении градуировочной модели. Как правило, предполагается линейная зависимость (параметры которой требуется установить) между аналитическим сигналом и содержанием определяемого вещества. В этом случае метод наименьших квадратов позволяет оптимизировать параметры градуировки (и получить наименьшую погрешность анализа), а сумма квадратов разностей теоретического и экспериментального значения аналитического сигнала является мерой погрешности градуировки и линейно связана с так называемой остаточной дисперсией (дисперсией адекватности модели)
Благодарю вас,
Благодарю вас, создатели за возможность изучить прекрасные лекции, отличающиеся простотой, доступностью и краткостью изложения, достаточной для освоения.
Творческих вам успехов!
метод наименьших квадратов
никак не могу разобраться в данном методе., если нужно использоватьегодля аппроксимировки данных
https://alglib.sources.ru/inte
https://alglib.sources.ru/interpolation/linearleastsquares.php - вот тут все подробно написано